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Abstract 

In this research work, prognosis and diagnosis of tool wear for the polycrystal diamond (PCD) tool has been done
by using fuzzy logic and Echostate Neural Network during machining of Al6061 metal matrix composite. Diagnosis
refers to estimation of amount of tool worn out and prognosis refers to estimation of remaining tool life. The
performances of fuzzy logic and ESNN with respect to diagnosis and prognosis of PCD tool wear has been
compared.
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I. INTRODUCTION

Aluminium matrix composites (AMCs)[1-4] refer to
the class of light weight high performance aluminium
centric material systems. The reinforcement in AMCs
could be in the form of continuous / discontinuous
fibres, whisker or particulates, in volume fractions
ranging from a few percent to 70%. Properties of AMCs
can be tailored to the demands of different industrial
applications by suitable combinations of matrix,
reinforcement and processing route. Presently several
grades of AMCs are manufactured by different routes.
Three decades of intensive research have provided a
wealth of new scientific knowledge on the intrinsic and
extrinsic effects of ceramic reinforcement vis-a-vis
physical, mechanical, thermo-mechanical and
tribological properties [5-10] of AMCs. In the last few
years, AMCs have been utilized in high-tech structural
and functional applications including aerospace,
defence, automotive, and thermal management areas,
as well as in sports and recreation. It is interesting to
note that research on particle-reinforced cast AMCs
took root in India during the 70’s, attained industrial
maturity in the developed world and is currently in the
process of joining the mainstream of materials.

This paper presents the method of using fuzzy
logic with echostate neural network to estimate
(diagnosis) the amount of tool wear during machining
of AlSiC with PCD. During the process, the amount of
remaining life time has to be estimated. Diagnosis

refers to estimation of amount of tool worn out and
prognosis refers to estimation of remaining tool life.

Tool wear is the process repeated rubbing of
sides of a tool , in this work it is PCD against the
AlSiC metal matrix composite workpiece. The tool wear
has been categorized into different ranges (Table 1).

Table 1. Tool wear classification

≤ 0.1 Low wear

0.1 to 0.2 Medium wear

0.2 to 0.25 High wear

Greater than 0.25 Results into chatter

II. MATERIALS AND METHODS

A. Properties of AA 6061

The following are important properties of Al6061
metal matrix work piece (Table 2).

B. Experimental Setup

The tool used is a single point indexable tip. PCD
contains a small amount of cobalt as a result of the
manufacturing process. If a PCD tool is subjected
continuous and significant heating during cutting, the
diamond is likely to transform back to graphite. In order
to avoid this effect, the use of coolant is recommended.
Due to the polycrystalline nature of PCD, it is
impossible to create cutting edges as perfect as those
of single crystal diamond. Even with the finest grade
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PCD, which has a particle size of 2 microns, it is not
possible to machine plastics and produce optically flat
surfaces.

PCD tools are relatively expensive, compared
with conventional cutting tools. Poor quality materials,
which have inclusions that break conventional cutting
tools, or work holding systems that do not locate and
hold the part securely, are likely to have the same
effect on PCD tools but at a greater cost.

Metal matrix composite (MMC) materials, Aluminium
reinforced with Silicon carbide particles or filaments can
be machined with PCD, but as the SiC content increases
the tool life reduces and materials with more than 30%

SiC are practically impossible to machine other than by
grinding. The size of the work piece is 55 × 250 m
length. The turning experiments were conducted and the
readings are given in Table 4.

C. Fuzzy Logic(FL)

Fuzzy logic has rapidly become one of the most
successful of today’s technologies for developing
sophisticated control systems. The reason for which is
very simple. Fuzzy logic addresses such applications
perfectly as it resembles human decision making with
an ability to generate precise solutions from certain or
approximate information. It fills an important gap in
engineering design methods left vacant by purely
mathematical approaches (e.g. linear control design),
and purely logic-based approaches in system design.
While other approaches require accurate equations to
model real-world behaviors, fuzzy design can
accommodate the ambiguities of real-world human
language and logic. It provides both an intuitive method
for describing systems in human terms and automates
the conversion of those system specifications into
effective models.

D. Echostate Neural Network (ESNN)

An artificial neural network (ANN) is an abstract
simulation of a real nervous system that contains a
collection of neuron units, communicating with each
other via axon connections. Such a model bears a
strong resemblance to axons and dendrites in a
nervous system. Due to this self-organizing and
adaptive nature, the model offers potentially a new
parallel processing paradigm. This model could be
more robust and user-friendly than the traditional
approaches. ANN can be viewed as computing
elements, simulating the structure and function of the
biological neural network. These networks are expected
to solve the problems, in a manner which is different
from conventional mapping. Neural networks are used
to mimic the operational details of the human brain in
a computer. Neural networks are made of artificial
‘neurons’, which are actually simplified versions of the
natural neurons that occur in the human brain. It is
hoped, that it would be possible to replicate some of
the desirable features of the human brain by
constructing networks that consist of a large number of
neurons. A neural architecture comprises massively
parallel adaptive elements with interconnection
networks, which are structured hierarchically.

Table 2. Properties of work piece

Properties Values Conditions T (°C)

Density ( × 1000 kg/m3) 2.7 25

Poisson’s Ratio 0.33 25

Elastic Modulus (GPa) 70-80 25

Tensile Strength (Mpa) 115 25

Yield Strength (Mpa) 48 25

Elongation (%) 25 25

Hardness (HB500) 30 25

Shear Strength (MPa) 83 25

Fatigue Strength (MPa) 62 25

Thermal Expansion

(10− 6/°C)
23.4 20 -100

Thermal Conductivity
(W/m-K)

180 25

Electric Resistivity

(10− 9 W−m
37 25

Properties of polycrystal diamond (Table 3).
Accepted wear limit for PCD is 0.25mm

Table 3. Properties of PCD tool

Density (g/cc) 3.43 3.49

Compressive strength (GPa) 4.74 4.15-5.33

knoop hardness (GPa) 50 44-60
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Dynamic computational models require the ability
to store and access the time history of their inputs and
outputs. The most common dynamic neural architecture
is the time-delay neural network (TDNN) that couples
delay lines with a nonlinear static architecture where
all the parameters (weights) are adapted with the
backpropagation algorithm. Recurrent neural networks
(RNNs) implement a different type of embedding that
is largely unexplored. RNNs are perhaps the most
biologically plausible of the ANN models. One of the
main practical problems with RNNs is the difficulty to
adapt the system weights. Various algorithms, such as
back propagation through time and real-time recurrent
learning, have been proposed to train RNNs. These
algorithms suffer from computational complexity,
resulting in slow training, complex performance
surfaces, the possibility of instability, and the decay of
gradients through the topology and time. The problem
of decaying gradients has been addressed with special
processing elements (PEs).

The echostate network (ESNN)[11-13], Figure 1,
with a concept new topology has been found by.
ESNNs possess a highly interconnected and recurrent
topology of nonlinear PEs that constitutes a “reservoir
of rich dynamics” and contain information about the
history of input and output patterns. The outputs of
these internal PEs (echostates) are fed to a memory
less but adaptive readout network (generally linear) that
produces the network output. The interesting property
of ESNN is that only the memory less readout is
trained, whereas the recurrent topology has fixed
connection weights. This reduces the complexity of
RNN training to simple linear regression while
preserving a recurrent topology, but obviously places
important constraints in the overall architecture that
have not yet been fully studied.

The echostate condition is defined in terms of the
spectral radius (the largest among the absolute values
of the eigenvalues of a matrix, denoted by (| | | |) of
the reservoir’s weight matrix (|| W || < 1). This condition
states that the dynamics of the ESNN is uniquely
controlled by the input, and the effect of the initial
states vanishes. The current design of ESNN
parameters relies on the selection of spectral radius.
There are many possible weight matrices with the same
spectral radius, and unfortunately they do not all
perform at the same level of mean square error (MSE)
for functional approximation.

Fig. 1. An echostate network (ESNN)

To train the ESNN, reservoirs and state matrix
have to be used. The number of the iterations required
for ESNN is lesser than the number of iterations
required for SDM.

The recurrent network is a reservoir of highly
interconnected dynamical components, states of which
are called echostates. The memory less linear readout
is trained to produce the output. Consider the recurrent
discrete-time neural network given in Figure 1 with M
input units, N internal PEs, and L output units.

The value of the input unit at time n is 

u (n) = ⎡
⎣

u1 (n), u2 (n), …, uM (n) ⎤
⎦

T ... (i)

The internal units are 

x (n) = ⎡
⎣

x1(n), x2(n),, xN(n) ⎤
⎦

T ... (ii)

, and output units are 

y (n) = ⎡
⎣

y1(n), y2(n), …, yL (n) ⎤
⎦

T ... (iii).

The connection weights are given

• in an (N × M) weight matrix Win = Win for
connections between the input and the
internal PEs,

• in an N × N matrix Wout = Win for
connections between the internal PEs

• in an L × N matrix Wout = Wout for
connections from PEs to the output units and
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• in an N × L matrix Wback = Wif
back for the

connections that project back from the output
to the internal PEs.

The activation of the internal PEs (echostate) is
updated according to

x (n + 1) = f (Win u (n + 1) + Wx (n) + Wbacky (n))

... (iv)

where f = (f1, f2, …, fN) are the internal PEs’
activation functions.

Here, all fi’s are hyperbolic tangent functions. 

ex − e− x

ex + e− x
.

... (v)

The output from the readout network is computed
according to

y (n + 1) = fout (Wout x (n + 1)),. ... (vi)

where

fout = ⎛
⎝ f1

out, f2
out, …, fL

out ⎞
⎠ are the output unit’s

nonlinear functions [15-16] Generally, the readout is

linear so foutis identity.

III. IMPLEMENTATION

A. Fuzzy logic training and testing

Generate a Sugeno-type Fuzzy logic information
system using subtractive clustering using the inputs 

1. Volume Percentage, 2. Speed - m/min,
3. Feed rate - mm/rev, 4. Depth of cut mm,
5. Machining time min, 6. Flank wear land width (vb)

mm, 7. Specific energy w/mm3/mm and target output,
Surface roughness, Ra, micrometer

B. ESNN training and testing

Training echostate network
Decide the input features of the registered image
Fix the target values

Set no. of inputs = 7;

Set no of reservoir = 20;

Set no. of output = 1

Create weight matrix(no of reservoirs, number of
inputs) =  random numbers − 0.5

Create weight backup matrix (number of outputs,
no of reservoirs) =  (random numbers − 0.5)/2

Create weight not (w0) (number of reservoirs, no
of reservoirs) =  (random numbers − 0.5)

Create temp matrix (te) (no.of reservoirs, no of
reservoirs) =  random numbers

Calculate w0 w0. * (te < 0.3)
Calculate w0 = w0.* (w0 <0.3)
Follow the heuristics
v = eig (w0)
lambda = max (abs(v))
w1= w0 / lambda
w = .9* w1
Create network training dynamics
state = zeros(no_reservoir,1)
desired = 0;
for loop
input = x(i:i+nipp-1)
F=wt_input* input’
TT=w*state
TH=wt_back’ * desired
next_state = tanh ( F+TT + TH)
state = next_state
desired = x (i+nipp-1)
desired_1 = desired
end
Network testing
input = x(i:i+nipp-1);
F=wt_input* input’;
TTH=wt_back’ * output_d;
next_state = tanh(F + w*state + TTH);
state = next_state;
output (i) = (wout’*state);

IV. RESULTS AND DISCUSSION

Figure 2 presents the plot for the actual output
and estimated outputs by fuzzy logic. The amount of
deviation between the estimated output and the actual
output is minimum. The x axis represents tool
machining data and the y axis represents estimation
by fuzzy logic.
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Table 4 Experimental data

S.No Volume fraction % Speed
m/min

Feed
mm/rev

Depth
of cut ,

mm

FxN FyN FzN Machining
time,
min

Flank
wear

Vb, mm

Specific
energy
x310

w.s /mm

1 10 50 0.2 0.5 35 65 70 2 0.03 1519 1.71

2 10 50 0.4 1.5 40 65 75 5 0.14 20.47 3.83

3 10 50 0.6 2.5 40 75 80 8 0.31 25.11 5.48

4 10 100 0.2 1.5 50 75 90 5 0.15 13.53 1.85

5 10 100 0.4 2.5 45 85 105 8 0.35 17.05 3.12

6 10 100 0.6 0.5 60 90 110 2 0.04 11.88 2.65

7 10 150 0.2 2.5 40 80 65 8 0.36 13.03 1.74

8 10 150 0.4 0.5 45 80 70 2 0.04 9.362 1.73

9 10 150 0.6 1.5 45 90 85 5 0.18 12.23 2.81

10 15 50 0.2 1.5 50 90 85 8 039 38.24 2.11

11 15 50 0.4 2.5 40 105 105 2 0.07 16.88 2.75

12 15 50 0.6 0.5 45 110 105 5 .19 41.03 3.17

13 15 100 0.2 2.5 60 80 125 8 0.49 29.90 2.78

14 15 100 0.4 0.5 55 85 130 5 0.21 21.30 1.01

15 15 100 0.6 1.5 60 80 125 8 0.49 29.90 2.78

16 15 150 0.2 0.5 55 85 130 5 0.21 21.30 1.01

17 15 150 0.4 2.5 60 150 210 8 0.51 23.48 1.82

18 15 150 0.6 2.5 60 100 115 2 0.09 10.09 2.02

19 15 50 0.2 2.5 60 90 125 5 0.35 42.83 1.48

20 25 50 0.4 0.5 55 85 140 8 0.56 87.50 1.91

21 25 50 0.6 1.5 60 100 120 2 0.11 32.88 2.27

22 25 100 0.2 0.5 25 70 85 8 0.62 57.86 0.93

23 25 100 0.4 1.5 60 100 125 2 0.12 22.34 1.30

24 25 100 0.6 2.5 70 100 115 5 0.43 33.49 1.95

25 25 150 0.2 1.5 50 80 105 2 0.12 17.07 0.72

26 25 150 0.4 2.5 50 85 100 5 0.45 26.29 1.28

27 25 150 0.6 0.5 25 70 90 8 0.72 52.28 1.40



Figure 3 presents the plot for the actual

output and estimated outputs by ESNN. The amount

of deviation between the estimated output and the
actual output is marginal. The x-axis represents tool

machining data and the y-axis represents

estimation by ESNN.

Table 5 presents the comparisons of

performances of fuzzy logic with echostate neural

network in diagnosis and prognosis of tool wear of

PCD while machining of Al metal matrix

composites. In the table, it can noticed that, the

computational complexity (third column) of fuzzy
logic is less than that of ESNN and percentage of

diagnosis and prognosis is 100% (fourth and fifth

column) in case of fuzzy logic than that of ENN

which is only 85.19%. The fuzzy logic appears to

be better than that of echostate neural network for

the machining data presented in Table 4. The

situation may change for a different sets of data.

IV. CONCLUSIONS

In this research work, diagnosis and prognosis of
tool wear of PCD on Al MMC machining and their
machinability behavior were analyzed using fuzzy logic
and echostate neural network. The percentage of
diagnosis and prognosis is better through fuzzy logic
than that of ESNN.
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